Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus.
نویسندگان
چکیده
Angiosperm leaves generally develop as bifacial structures with distinct adaxial and abaxial identities. However, several monocot species, such as iris and leek, develop unifacial leaves, in which leaf blades have only abaxial identity. In bifacial leaves, adaxial-abaxial polarity is required for leaf blade flattening, whereas many unifacial leaves become flattened despite their leaf blades being abaxialized. Here, we investigate the mechanisms underlying the development and evolution of flattened leaf blades in unifacial leaves. We demonstrate that the unifacial leaf blade is abaxialized at the gene expression level and that an ortholog of the DROOPING LEAF (DL) gene may promote flattening of the unifacial leaf blade. In two closely related Juncus species, Juncus prismatocarpus, which has flattened unifacial leaves, and Juncus wallichianus, which has cylindrical unifacial leaves, DL expression levels and patterns correlate with the degree of laminar outgrowth. Genetic and expression studies using interspecific hybrids of the two species reveal that the DL locus from J. prismatocarpus flattens the unifacial leaf blade and expresses higher amounts of DL transcript than does that from J. wallichianus. We also show that leaf blade flattening is a trigger for central-marginal leaf polarity differentiation. We suggest that flattened unifacial leaf blades may have evolved via the recruitment of DL function, which plays a similar cellular but distinct phenotypic role in monocot bifacial leaves.
منابع مشابه
Modification and co-option of leaf developmental programs for the acquisition of flat structures in monocots: unifacial leaves in Juncus and cladodes in Asparagus
It has been suggested that modification and co-option of existing gene regulatory networks (GRNs) play an important role in the morphological diversity. In plants, leaf development is one of active research areas, and the basic GRN for leaf development is beginning to be understood. Moreover, leaves show wide variation in their form, and some of this variation is thought to be the result of ada...
متن کاملThe extended auricle1 (eta1) gene is essential for the genetic network controlling postinitiation maize leaf development.
The maize leaf is composed of distinct regions with clear morphological boundaries. The ligule and auricle mark the boundary between distal blade and proximal sheath and are amenable to genetic study due to the array of mutants that affect their formation without severely affecting viability. Herein, we describe the novel maize gene extended auricle1 (eta1), which is essential for proper format...
متن کاملYUCCA genes are expressed in response to leaf adaxial-abaxial juxtaposition and are required for leaf margin development.
During leaf development, the formation of leaf adaxial-abaxial polarity at the primordium stage is crucial for subsequent leaf expansion. However, little is known about the genetic control from polarity establishment to blade outgrowth. The leaf margin, comprising elongated margin cells and hydathodes, is thought to affect leaf expansion. Here, we show that mutants with defective leaf polarity ...
متن کاملLeaf Wand for Measuring Chlorophyll Fluorescence on Cylindrical Leaves and Its Application on Juncus roemerianus (Black Needlerush)
Chlorophyll fluorescence is a well established technique to rapidly and non-invasively determine photosynthesis parameters in plant leaves. It can be used in both laboratory and field settings, and frequently dark-adaptation of a leaf sample is called for. In the field, this can be accomplished on flat leaves using standard leaf clips supplied by instrument manufacturers. However, not all plant...
متن کاملPhenotypic Correlation between Some Nurserphelogical Traits among 60 Cultivars and the Genotypes of Almond
This research was carried out for evaluating phenotypic diversity and traits correlation in 60 almond genotypes and cultivars in nursery conditions. After preparation land and the bitter seeds of Shahroud22 genotype as seedling rootstocks planted in the autumn 2005. After the seed germination in the spring of the next year, the results of recorded data in 3rd may of 2006 showed that the planted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2010